Clinically Translatable Cell Tracking and Quantification by MRI in Cartilage Repair Using Superparamagnetic Iron Oxides
نویسندگان
چکیده
BACKGROUND Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal stem cells (hBMSCs) regarding effectivity, cell viability, long term metabolic cell activity, chondrogenic differentiation and hBMSC secretion profile. We additionally examined the capacity of synovial cells to endocytose SPIO from dead, labeled cells, together with the use of magnetic resonance imaging (MRI) for intra-articular visualization and quantification of SPIO labeled cells. METHODOLOGY/PRINICIPAL FINDINGS Efficacy and various safety aspects of SPIO cell labeling were determined using appropriate assays. Synovial SPIO re-uptake was investigated in vitro by co-labeling cells with SPIO and green fluorescent protein (GFP). MRI experiments were performed on a clinical 3.0T MRI scanner. Two cell-based cartilage repair techniques were mimicked for evaluating MRI traceability of labeled cells: intra-articular cell injection and cell implantation in cartilage defects. Cells were applied ex vivo or in vitro in an intra-articular environment and immediately scanned. SPIO labeling was effective and did not impair any of the studied safety aspects, including hBMSC secretion profile. SPIO from dead, labeled cells could be taken up by synovial cells. Both injected and implanted SPIO-labeled cells could accurately be visualized by MRI in a clinically relevant sized joint model using clinically applied cell doses. Finally, we quantified the amount of labeled cells seeded in cartilage defects using MR-based relaxometry. CONCLUSIONS SPIO labeling appears to be safe without influencing cell behavior. SPIO labeled cells can be visualized in an intra-articular environment and quantified when seeded in cartilage defects.
منابع مشابه
Contribution of macrophages in the contrast loss in iron oxide-based MRI cancer cell tracking studies
Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role ...
متن کاملFunctional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles.
Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capac...
متن کاملIn Vivo MRI Tracking of Polyethylenimine-Wrapped Superparamagnetic Iron Oxide Nanoparticle–Labeled BMSCs for Cartilage Repair
OBJECTIVE To evaluate the feasibility of tracking polyethylenimine (PEI)-wrapped superparamagnetic iron oxide (SPIO) nanoparticle-labeled, bone marrow-derived mesenchymal stem cells (BMSCs) by in vivo magnetic resonance imaging (MRI) in articular cartilage repair in a minipig model. METHODS Eighteen Guizhou minipigs were randomly divided into three groups (groups A, B, and C). In group A, PEI...
متن کاملMultimodal cell tracking of a spontaneous metastasis model: comparison between MRI, electron paramagnetic resonance and bioluminescence.
MRI cell tracking is a promising technique for tracking various cell types in living animals. Usually, cells are incubated with iron oxides so that the particles are taken up before the cells are injected in vivo. In the present study, we aimed to monitor migration of luciferase-expressing mouse renal cancer cells (RENCA-luc) after intrarenal or intrasplenic injection. These cells were labelled...
متن کاملNpgrj_nbt_1154 1407..1413
The success of cellular therapies will depend in part on accurate delivery of cells to target organs. In dendritic cell therapy, in particular, delivery and subsequent migration of cells to regional lymph nodes is essential for effective stimulation of the immune system. We show here that in vivo magnetic resonance tracking of magnetically labeled cells is feasible in humans for detecting very ...
متن کامل